

5 July 2010

The Case for Revitalization

The anecdote goes like this:

If Alexander Graham Bell were somehow transported to the 21st century, he would not begin to recognize the components of modern telephony...

While Thomas Edison, one of the grid's key early architects, would be totally familiar with the grid.

Source: "Smart Grid: An Introduction" U. S. Dept. of Energy

The concept of « smart grid »

➤ Integration of digital computing and communication technologies and services with the power-delivery infrastrucure

Smart grid definition

- The term "Smart Grid" refers to a modernization of the electricity delivery system so it monitors, protects and automatically optimizes the operation of its interconnected elements from the central and distributed generator through the **high-voltage network and distribution system**, to industrial users and building automation systems, to energy storage installations and to enduse consumers and their thermostats, electric vehicles, appliances and other household devices.
- ☐ The Smart Grid will be characterized by a **two-way flow** of electricity and information to create an automated, widely distributed energy delivery network. It incorporates into the grid the benefits of distributed computing and communications to deliver real-time information and enable the near-instantaneous balance of supply and demand at the device level.

Source: Independence and Security Act of 2007

The main drivers for smart grids

Not all the countries have the same priorities

- ☐ In the USA, grids are generally old and in a poor condition. Reduction of average duration of interruptions is the priority.
- ☐ In France, three major drivers :
 - ➤ Integration of renewable and distributed energy sources
 - Customers education / Demand side management
 - ➤ Integration of electrical vehicles fleets

Integration of Distributed Energy Resources

Integration difficult because of discrepancy between local demand and local production

France-Israël dialogue on sustainable energy options – Jerusalem 4 & 5 July 2010

Medium voltage station with photovoltaics production

P (en kW)

31 March 2009

Source; EDF

Today's DER integration concept: Connect and forget!

The smart grid solution: a Virtual Power Plant Controller (VPPC)

Source; Siemens

In the absence of mass storage solutions, demand side management is a must

The cost effective solution will result from a combination between active energy management and remote energy management

- Active Energy Management: Price and usage visibility allow customer to adapt consumption behavior by reducing energy usage while securing comfort
 - Lighting Monitoring
 - Space Heating and Hot water heating management
- Remote energy management: Shaving of peak loads and shifting of energy usage by smart control of certain energy uses: water heating, household appliances (washing machines)

Demand side management necessitates advanced metering infrastructures

Smart meters in California: 6 000 000 as of June 2010

Source: PGE

Nota: Circa 80 000 000 smart meters installed around the world (Italy, Japan, Canada, australia etc.)

Tle Linky project in France: more than a meter

Source; ERDF

Source; ERDF

France-Israël dialogue on sustainable energy options – Jerusalem 4 & 5 July 2010

Electrical vehicles

☐ French government has announced in October 2009 ambitious targets

- ☐ Three kinds of charging stations:
 - 3 kW (home or work) : complete recharge in 8 hours
 - 24 kW (semi rapid) : 5 minutes for 10 km
 - 40 kW (rapid) : special situations

Two main issues

☐ How to integrate the charging stations in the grid?

Full recharching of an electrical vehicle in	requires an electrical power equivalent to
8 hours (3 kW)	A water heater
1 heure (25 kW)	A building
3 minutes (600 kW)	A district in a city

- ☐ An electrical vehicle will consume, in average, 3 MWh per year i.e.6 TWh per year for a fleet of 2 millions of vehicles
 How to be sure that these 6 TWh will correspond to
 - Off peak power
 - CO₂ free energy
- → The answer : maybe "smart grids" but how?

Smart grids: the ultimate objective

A lot of issues remains to be addressed

Technical

- ☐ General architecture : hierarchy of network management and corresponding algorithms
- Modelization, forecasting tools and control of intermittent resources
- ☐ Smart meters: low cost, accurate, reliable, easy to use
- ☐ Dynamic line rating (depending on weather conditions)
- ☐ Power electronics devices : HVDC lines (for deep off shore), FACTS
- ☐ Infrastructures for electrical vehicles and strategies of management
- ☐ Communications (see next slide) and cyber-security

Regulations and tarification

- ☐ Flexible pricing: mandatory or voluntary (customer dependant)
- ☐ Clear delineation of the role of operators

Standardization

☐ Interoperability/Interchangeability of devices

Finance

☐ Cost efficiency; burden sharing of the investment

Sociological acceptance

Which communication solutions will enable smartgrids?

Distribution after concentrators

Inside « Pro-sumers »

Distribution before concentrators

